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Summary

® Basic Plasma Science Facility: US DOE and NSF sponsored user facility
for study of fundamental processes in magnetized plasmas. Primary
device is Large Plasma Device (LAPD).

® Wide range of studies performed: waves, instabilities, turbulence &
transport, shocks, reconnection. Brief highlights of recent experiments
will be given, with a longer discussion on Alfven wave studies, including

® the first observation of a parametric instability of kinetic Alfven
waves in the laboratory [Dorfman & Carter PRL 2016]

® high power fast wave excitation in LAPD (ICRF): Measurements of
RF rectified sheaths on antenna structure [Martin et al., PRL 2017/]
and parasitic coupling to slow mode



The LArge Plasma Device (LAPD): a flexible experimental platform
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® 20m long, Im diameter vacuum chamber; emissive cathode
discharge

® | aB¢ Cathode:n ~ 5x1013 cm-3,Te ~ 10-I5 eV, T; ~ 6-10 eV

® B up to 2.5kG (with control of axial field profile)
® High repetition rate: | Hz

® US NSF/DOE Sponsored user facility, international users
welcome!(proposals will be due Dec 2021)




Major Plasma Source Upgrade: large-area LaBe
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New large-area LaBs emissive Catode source p'vides higher power density,
access to higher density, higher pressure = magnetized plasma at higher g

(currently at 0.2 reliable plasmas)

Design, fabrication and installation complete in spite of COVID-19 delays and
restrictions

Faclility has restarted research operations and hosting external users



Measurement methodology in LAPD

® Use single probes to measure local density, temperature, potential, magnetic
field, flow: move single probe shot-to-shot to construct average profiles
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Measurement methodology in LAPD

® Use single probes to measure local density, temperature, potential, magnetic
field, flow: move single probe shot-to-shot to construct average profiles

® Add a second (reference) probe to use correlation techniques to make detailed
statistical measurements of non-repeatable phenomena (e.g. turbulence)
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Example data: Alfven wave MASER
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® Plasma source acts as resonant cavity for s 05 -
shear Alfvén waves a 00 :
| | —f
® Driven spontaneously by discharge current  $ :

(thought to be inverse Landau damping on
return current electrons)

® Alfven wave “MASER”

Maggs, Morales, PRL 91, 035004 (2003)
Maggs, Morales, Carter, PoP 12,013103 (2005)




Measured structure of Alfven eigenmodes in LAPD
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Extensive studies of Alfven wave physics in LAP

® | APD created to enable AWV research need length to fit of 1L |
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® A number of issues studied over the years: radiation from small source, resonance cones,
field line resonances, wave reflection, conversion from KAW to |AWV on density gradient...

Review: Gekelman, et al., PoP 18,055501, (201 1)

Details, publication list at http://plasma.physics.ucla.edu
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http://plasma.physics.ucla.edu

Electron acceleration by inertial Alfven waves
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® Kletzing/SkifffHowes/Schroeder (lowa): interest in
understanding electron acceleration by Alfvén waves;
relevance to generation of Aurora

» Using measured g,

— Model from panel e |
[ . .
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® Used novel electron distribution diagnostic (whistler wave T LA .
absorption (Skiff)) to demonstrate acceleration of electrons =0 \/ﬁ -

° ) ’ 3_ i |

by inertial Alfvén waves e e N B

sign(v,) X energy (eV)

Schroeder, et al., Nature Comm. 12,3103 (2021)



Electron acceleration by inertial Alfven waves

physicsworld | a Mag:

CNN Weather Climate Storm Tracker Wildfire Tracker Video

@) | plasma physics

SPACE’S
NEXT CHAPTER

PLASMA PHYSICS | RESEARCH UPDATE

The mysterious origin of the northern lights has been

proven v Electrons ‘surf’ on Alfvén waves in plasma-chamber
T@ By Jennifer Gray, CNN meteorologist in expe rl ments
' (O Updated 2:32 PM ET, Tue June 8, 2021 S 29 Jun 2021
R a
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The Secret to Brilliant Auroras? ‘Surfing’ Electrons

New research sheds light on the complex physics behind the Northern lights.

By Brianna Barbu | Aug 6, 2021 8:00 AM POPULAR SCIENCE SCIENCE TECH DIY REVIEWS SUBSCRIBER LOGIN

ScienceNews irocs Ukt wonais ,
”””””””””””””””””””””””””””””” We finally know what sparks the

o - Northern Lights

Auroras form when electrons
from space ride waves in It took researchers more than 20 years to figure out this light show mystery.

Ea]_‘th’S magnetic fleld BY RAHUL RAO | PUBLISHED JUN 21, 2021 7:00 PM

The same physics could give rise to auroras on Jupiter and Saturn

Schroeder, et al., Nature Comm. 12,3103 (2021)




Propagation of Alfven waves in parallel Alfven speed gradients
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Bose, et al.,, Ap) 882 183 (2019)



Creating collisionless shocks in the laboratory

\ | | o 10
15 20 25 30 35 40 45
X (cm)

g Magnetic pulse at bubble edge separates from
L Laser piston and steepens into M,~2 shock
X Laser focusing | tQ,
z beam 3 — 0 1 2 3 4 Geophysical Research LetteM
: — | I ] time (us
He ambient y - = 06 0.8 1.8‘ ) 12 14 -
plasma
(b) 2
C, H debris s
plasma AU . 00 ] e~ N\ T =T\ _ _\_______] 10
vacuum
0
30 (
X (P,
Blow-off 60 80 pfoo 120
axis
12
| o
Plastic : 1%
target cavity . downstream | upstream
|
I

_ Central
Magnetic i axis
coils Imaging
field of view

time (us)

® Quasi-perpendicular collisionless, magnetized shocks created using 200] laser
(Niemann, UCLA); consistent with “Larmor Coupling” mechanism

Bondarenko, et al., Nature Physics 13, 573-577 (2017)



Creating collisionless shocks in the laboratory: Right-
piston”

I“

hand resonant instability observed with paralle

0 b b T
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Time (us)

® With parallel drive, see development of instability that is
thought to mediate quasi-parallel collisionless shocks:
right-hand resonant instability (RHI). Relevant to Earth’s

— OV R ACYT A | bow shock

o~ s P Heuer et al.,ApJL 891,L11 (2020)

X(d,
o Strumik et al. (2015) GRL




Production of whistler-chorus-like emission by energetic
electrons

® | Bortnik (UCLA): interested in studying interactions between energetic
electrons and whistler waves; relevance to Earth’s radiation belts

g

Pulse circuit s 2 20 40 50 80 14
LAPD anode < 2 12,
y 2 - =2 and cathode ): 0:§ 153
Helium ’ ® , : S o1 05 &
;e ! <. OOF 100 =
Probe v ' )‘3 —0.1 1-053
Ef > 2=0.96m % : :
B Electron beam \’ \’ :
O 2=0m A ;
15 m

® [nject ~4 keV electron beam into LAPD;
observe frequency chirped wave emission

Van Compernolle, et al,, Phys. Rev. Lett. | 14,245002 (2015)
An, et al. Geophys. Res. Lett., 43, 2413-2421 (2016)

882 (G2 /Hz)



Importance of nonlinear processes associated with Alfven waves
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(Bale et al. 2005)

® Alfvenic turbulence: inertial range mediated by Alfven three-wave interactions;
dissipation scale (e.g. heating in solar wind and accretion disks) potentially explained

by damping of Alfven waves

® Decay instabilities: parametric decay (AW — AW + Sound Wave), e.g. might help
generate counter-propagating spectrum of AVVs in solar corona/solar wind or possibly

bypass cascade



Making large amplitude Alfven waves in the lab

Magnetic Probe Signal

® Resonant cavity (MASER, narrowband), loop antenna (wideband)

® Both can generate AWs with dB/B ~ 1% (~10G or 1mT); large amplitude from
several points of view:

e From GS theory: stronger nonlinearity for anisotropic waves; here ki/k, ~ dB/B

. . 2/t
® \Wave beta is of order unity fu = <55;f> ~ 1

¢ Wave Poynting flux ~ 200 kW/m=2, same as discharge heating power density




Strong electron heating by large amplitude Alfven waves in LAPD

active phase afterglow
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Localized heating observed, on wave current channel (collisional and Landau damping:
Note damping length is comparable to machine length!)

Results in structuring of plasma (additionally see parallel outflows, density, potential
modification, cross-field flows)
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Temperature, density and
potential structuring by AW
heating

® Strong heating on wave current channels

® Density depletion on current channel
(density enhancement surrounding)

® Current channels tilt at high amplitude
(due to potential, ExB flow! Consistent
direction)

® Effect of structuring on wave
propagation!?



Movie of heating during afterglow: dynamics of
wave current channels and heated region

RMS wave current

y (om)

X {cm) X {cm)

* Low frequency fluctuations observed, current channel wanders
e Drift-Alfven waves driven by temperature gradients!?



Low frequency fluctuations observed on heating-produced
temperature gradients: consistent with unstable drift-Alfven waves

T. fluctuations

5 10

Te cross-covariance

~

- .
__________

-10 -5 0 5 10

T. Cross—covariance
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® Fluctuations localized to edge of heated region, correlation measurements
reveal m=2 dominant mode consistent with resistive drift-Alfven waves



Sideband generation and turbulent broadening of AW from interaction
with drift-Alfven fluctuation
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® Sidebands separated by dominant drift-Alfven wave frequency

® [arger drift wave frequency at lower power: smaller heated channel



Nonlinear studies of Alfven waves in LAPD

® Series of experiments exploring three-wave interactions and decay instabilities.
Motivations include studying Alfvenic turbulence in the lab

® (ollision of two antenna-launched shear Alfven waves:

® Two co-propagating AVVs produce a quasimode [Carter, et al., PRL, 96, 155001
(2006)]

® Two co-propagating KAVWVs drive drift waves, lead to control/ suppression of

unstable modes (in favor of driven stable mode) [Auerbach, et al,, PRL, 105, 135005
(2010)]

® Two counter-propagating AVVs, one long wavelength (k; = 0), produce daughter AW
(building block of MHD turbulent cascade) [Howes, et al., PRL, 109, 255001 (2012)]

® Two counter-propagating AWs nonlinearly excite an ion acoustic wave [Dorfman &
Carter, PRL, 1 10, 195001 (2013)]

® Parametric instability of single large-amplitude shear wave [Dorfman & Carter, PRL,
116, 195002 (2016)]



Observation of a parametric instability of kinetic Alfven waves in LAPD
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Y (cm)

Pump waves: linearly and circularly polarized
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Above a threshold in pump amplitude, see production of

sidebands and low frequency mode
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® Threshold in amplitude and in pump
frequency (only observed for f = 0.5 f)

® All three daughter waves co-
propagating with pump. Need
dispersive AVVs

® Modes satisfy three-wave matching
rules



Above a threshold in pump amplitude, see production of

sidebands and low frequency mode
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Sidebands are KAWVs, low frequency mode is quasimode
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® Sideband waves are consistent with KAV dispersion relation

® Low frequency mode is a nhon-resonant mode/quasimode: phase speed inconsistent
with sound wave or KAW

¢ Participant modes consistent with modulational decay instability
(but why don’t we see parametric decay?)
[Dorfman & Carter, PRL, | 16, 195002 (2016)]



ICRF Campaign on LAPD: using fast waves/compressional
Alfven waves to heat, energize ions, drive current

® |on Cyclotron Range of Frequencies (ICRF) waves used to heat ions
and electrons and drive current in fusion experiments

® Campaign led by C. Lau (ORNL) with participation from scientists at
ORNL, MIT, PPPL, General Atomics, TAE Technologies, IPP, U. Ghent...

® Coupling, physics of fast waves, helicon waves, novel heating schemes
relevant to fusion experiments

® Parasitic processes and their mitigation: RF sheaths (&
sputtering/PMI), coupling to slow mode, parametric
instabilities.



RF Sheaths lead to impurity generation in fusion
experiments

® Some fusion experiments, in particular those with High-Z PFCs (e.g.
Tungsten on ASDEX-U), see impurity generation/influx during ICRF heating

® Culprit is RF rectification of antenna near fields on antenna structures
(and possibly also far-field rectification) - strong DC E fields result that
accelerate ions into antenna structure and cause sputtering

® Mitigation of these effects: field-aligned antenna (minimize parallel E,
Alcator C-Mod) and reduced image currents using three-strap balanced

current scheme (ASDEX-U)

Neu R et al Plasma Phys. Control. Fusion 49 B59—-70 (2007)
Wukitch et al Physics of Plasmas 20,0561 17 (201 3)
V Bobkov et al Plasma Phys. Control. Fusion 59 014022 (2017)



LAPD single-strap ICRF System

* Single strap fast wave antenna inserted up to edge of high
density core (generated by smaller LaBé cathode)

* Antenna can be tilted to any angle with respect to
background field

* High power source: f=1-10 fci, ~200 kW

. or— BaO Limiter, Fast wave antenna, z=0 LaBg Limiter,
ntenna Schematic >=36m 'antenna ~ IoCOS(ert)V Zz=-3.9m
A=
'
| |

|

!

Z I

' X LaB¢ Plasma :
Probes BaO Plasma

BaO Discharge Circuit LaB¢ Discharge Circuit



3D wave measurements: m=1| fast wave
eigenmode excited by single-strap antenna




Plasma potential measurements show evidence of RF rectification
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2D Potential measurements: potential
enhancements localized on antenna structure

Before RF During RF
20 t/t_rf = 0.00 Vp (V) K t/t_rf = 199.84 Vp (V)
Cimiter 99.9 — 95.9
10 80.2 10 « ‘ 80.2
64.6 64.6
€ €
L 0 48.9 S 48.9
% % »
33.3 33.3
-10 17.6 -10 17.6
2.0 2.0
-20 -20
-20 -10 0 10 20 30 -20 -10 0 10 20 30
x (cm) x (cm)

[Martin, et al. PRL 119,205002 (2017)]



Potential enhancement scales linearly with antenna
current

During RF o Xx=y=-12cm
t/t_rf = 199.84 Vp (V)

80 Vp = ().1 18017'|ant + 7.24876
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Sputtering due to RF Rectification

Emissive Probe

B-field Probe

e Probes are coated with copper after
experimental run

e Coating likely originates from copper
antenna structure




Mitigating RF sheaths: insulating antenna sidewalls
eliminates RF sheath
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Parasitic coupling to slow mode in LAPD

If density at antenna is low enough, unwanted coupling to slow mode (LH) is
possible, leading to lost power, far-field sheaths, etc.
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Parasitic coupling to slow mode observed in
low density plasma near antenna

Lower hybrid wave near Fast wave in high density
antenna, backward core plasma, m =1 mode
propagation as before
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Summary

® Basic Plasma Science Facility: US DOE and NSF sponsored user facility
for study of fundamental processes in magnetized plasmas. Primary
device is Large Plasma Device (LAPD).

® Wide range of studies performed: waves, instabilities, turbulence &
transport, shocks, reconnection. Brief highlights of recent experiments
will be given, with a longer discussion on Alfven wave studies, including

® the first observation of a parametric instability of kinetic Alfven
waves in the laboratory [Dorfman & Carter PRL 2016]

® High power fast wave excitation in LAPD (ICRF): Measurements of
RF rectified sheaths on antenna structure [Martin et al., PRL 2017/]
and parasitic coupling to slow mode



2021 BaPSF Runtime Solicitation

50% of LAPD operation time is dedicated to users (other 50% is utilized by BaPSF
Group). Typically this is 20 weeks a year for users.

Runtime is allocated via a runtime proposal solicitation process; TBA. White
Paper Proposals will likely be due Dec 2021

~5 page proposal, provide scientific motivation, experimental resources needed,

experimental plan E 1 E
ll l .-
T

Details of solicitation, white paper template posted at |_|_. 1"

http://plasma.physics.ucla.edu E ﬂ r.

Please feel free to reach out with any questions:
tcarter@physics.ucla.edu

External reviews of all proposals, final recommendation
made by BaPSF Council and acted on by director

(Info on 2019 solicitation)
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